Proc. Asia South Pacific

Design Automation Conf. (ASP-DAC),

Shanghai, China, vol. 1, Jan. 2005, pp. /2-1/7.

Opportunities and Challenges for
Better Than Worst-Case Design

Todd Austin, Valeria Bertacco, David Blaauw, and Trevor Mudge

Advanced Computer Architecture Lab
The University of Michigan
razor@eecs.umich.edu

ABSTRACT

The progressive trend of fabrication technologies towards
the nanometer regime has created a number of new physical
design challenges for computer architects. Design complex-
ity, uncertainty in environmental and fabrication conditions,
and single-event upsets all conspire to compromise system
correctness and reliability. Recently, researchers have be-
gun to advocate a new design strategy, called Better Than
Worst-Case design, that couples a complex core component
with a simple reliable checker mechanism. By delegating the
responsibility for correctness and reliability of the design to
the checker, it becomes possible to build correct-certified
designs that effectively address the challenges of deep sub-
micron design.

In this paper, we present the concepts of Better Than
Worst-Case design and highlight two exemplary designs: the
DIVA checker and Razor logic. We show how this approach
to system implementation relaxes design constraints on core
components, which reduces the effects of physical design
challenges and creates opportunities to optimize performance
and power characteristics. We demonstrate the advantages
of relaxed design constraints for the core components by
applying typical-case optimization (TCO) techniques to an
adder circuit. By analyzing the carry-propagation charac-
teristics of real programs, it is possible to design an adder
circuit that when incorporated into a Better Than Worst-
Case design exhibits significantly reduced latency. Finally,
we discuss the challenges and opportunities posed to CAD
tools in the context of Better Than Worst-Case design. In
particular, additional support is required for analyzing run-
time characteristics of designs, and many opportunities are
created to incorporate typical-case optimizations into syn-
thesis, testing and verification.

1. INTRODUCTION

The advent of nanometer feature sizes in silicon fabrica-
tion has triggered a number of new design challenges for
computer architects. These challenges include design com-
plexity, device uncertainty and soft-errors. It should be

noted that these new challenges add to the many challenges
that architects already face in order to scale systems’ per-
formance while meeting power and reliability budgets.

The first challenge of concern is design complexity. As
silicon feature sizes decrease, architects have available in-
creasingly large transistor budgets. According to Moore’s
law, which has been tracked for decades by the semiconduc-
tor industry, architects can expect to have available twice
the number of transistors every 18 months. In pursuit of
increased system performance, they typically employ these
transistors in components that contribute to increased in-
struction level parallelism and reduced operational latency.
While many of these transistors are assigned to regular,
easy-to-verify components, such as branch predictors and
caches, many others find their way into complex devices
that increase the burden of verification placed on the de-
sign team. For example, the Intel Pentium IV architecture
(follow-on of the Pentium Pro) introduced a number of com-
plex components, including a trace cache, instruction replay
unit, vector arithmetic, and staggered ALUs [13]. These
new devices, made affordable by generous transistor bud-
gets, lead to even more challenging verification efforts. In
a recent paper detailing the design and verification of the
Pentium IV processor, it was observed that its verification
required 250 person-years of effort, a full three-fold increase
in human resources compared to the design of the earlier
Pentium Pro processor [6].

The second challenge architects face is the design un-
certainty that is created by increasing environmental and
process variations. Environmental variation is caused by
changes in temperature and supply voltage. Process vari-
ation results from device dimension and doping concentra-
tion variation that occurs during silicon fabrication. Pro-
cess variation is of particular concern because its effects on
devices are amplified as device dimensions shrink [2]. Ar-
chitects are forced to deal with these variations by design-
ing for worst-case device characteristics (usually, a 3-sigma
variation from typical conditions), which leads to overly con-
servative designs. The effect of this conservative design ap-
proach is most evident by examining the extent to which
hobbyists can overclock high-end microprocessors. For ex-
ample, AMD’s best-of-class Barton 32004+ microprocessor
is specified to run at 2.2 GHz, yet it has been successfully
overclocked up to 3.1 GHz [1]. This is accomplished by op-

Permission to make digital or hard copies of all or part of this work for timizing device cooling and voltage supply quality and by
personal or classroom use is granted without fee provided that copies aretuning system performance to the specific process conditions
not made or distributed for profit or commercial advantage and that copies of their individual chip.

bear l;Ihishnotice and the full citation %r_l th% first pfla_ge. To copy oth_erwise,;_o The third challenge of growing concern is soft errors that
republish, to post on servers or to redistribute to lists, requires prior specific4 by charged particles (such as alpha particles or

issi d/or a fee. . o . .
ge(})rg?/lrsigsﬁnZggS XE?VI E)E(e—XXXXX—XX—X/XX/XX . $5.00. neutrons) that strike the bulk silicon portion of a die. The

trev
Typewritten Text

trev
Typewritten Text
 Proc. Asia South Pacific Design Automation Conf. (ASP-DAC), Shanghai, China, vol. 1, Jan. 2005, pp. I/2-I/7.

striking particle creates extra charge that can migrate into
the channel of a transistor, and temporarily turn it on or off.
The end result is a logic glitch that can potentially corrupt
logic computation or state bits. While a variety of studies
have been performed to demonstrate the unlikeliness of such
events [16], great concern remains in the architecture and
circuit communities, fueled by the trends of reduced sup-
ply voltage and increased transistor budgets, both of which
exacerbate a design’s vulnerability to soft errors.

The combined effect of these three design challenges is
that architects are forced to work harder and harder just
to keep up with system performance, power and reliability
design goals. The unsurmountable task of meeting these
goals with limited resource budgets and increasing time-to-
market pressures has raised these design challenges to crisis
proportion. In this paper, we highlight a novel design strat-
egy to address these challenges, called Better Than Worst-
Case design, that embraces a design style which separates
the concerns of correctness and robustness from the ones of
performance and power. The approach decouples designs
into two primary components: a core design component and
a simple checker. The core design component is responsi-
ble for performance and power efficient computing, and the
checker is responsible for verifying that the core computation
is correct. By concentrating the concerns of correctness into
the simple checker component, the majority of the design
is freed from these overarching concerns. With relaxed cor-
rectness constraints in the core component, architects can
more effectively address the three highlighted design chal-
lenges. We have demonstrated in prior work (highlighted
herein) that it is possible to decompose a variety of impor-
tant processing problems into effective core/checker pairs.
The designs we have constructed are faster, cooler and more
reliable than traditional worst-case designs.

The remainder of this paper is organized as follows. Sec-
tion 2 overviews the Better Than Worst-Case design ap-
proach and presents two effective designs solutions: DIVA
checker and Razor logic. Better Than Worst-Case designs
have the unique property that their performance is related
to the typical-case operation of the core component. This is
in direct contrast to worst-case designs, where system per-
formance is bound by the worst-case performance of any
component in the system. In Section 3, we demonstrate
how typical-case optimization (TCO) can improve the per-
formance of a Better Than Worst-Case design. We show
that a typical-case optimized adder is faster and simpler
than a high-performance Kogge-Stone adder. The opportu-
nity to exploit typical-case optimization creates many new
CAD challenges. In Section 4, we discuss the need for deeper
observability of run-time characteristics at the circuit-level
and present a circuit-aware architectural simulator that ad-
dresses this need. Section 5 suggests additional opportuni-
ties for CAD tools in the context of Better Than Worst-Case
design, in particular highlighting opportunities brought by
typical-case optimizations in synthesis, verification, and test-
ing. Finally, Section 6 draws conclusions.

2. BETTER THAN WORST-CASE DESIGN
Better Than Worst-Case design is a novel design style that

has been suggested recently to decouple issues of design cor-

rectness from those of design performance. The name Better

Than Worst-Case design' underlines the improvement that
this approach represents over traditional worst-case design
techniques.

Well-defined
Operations

(|
Verified
aBET,

Performance/Power
Optimized
Core Component

Input Output

Detects and Corrects
Operational Faults

Figure 1: Better Than Worst-Case Design Concept

Traditional worst-case design techniques construct com-
plete systems which must satisfy guarantees of correctness
and robust operation. The previously highlighted design
challenges conspire to make this an increasingly untenable
design technique. Better Than Worst-Case designs take a
markedly different approach, as illustrated in Figure 1. In a
Better Than Worst-Case design, the core component of the
design is coupled with a checker mechanism that validates
the semantics of the core operations. The advantage of such
designs is that all efforts with respect to correctness and ro-
bustness are concentrated on the checker component. The
performance and power efficiency concerns of the design are
relegated to the core component, and they are addressed in-
dependently of any correctness concerns. By removing the
correctness concerns from the core component, its design
constraints are significantly relaxed, making this approach
much more amenable to address physical design challenges.

To find success with a Better Than Worst-Case design
style, the checker component must meet three design re-
quirements: i) it must be simple to implement lest the checker
increase overall design complexity, ii) it must be capable
of validating all core computation at its maximum process-
ing rate lest the checker slow system operation, and iii) it
must be correctly implemented lest it introduce processing
errors into the system. In the following subsections, we
present two Better Than Worst-Case designs that demon-
strate how simple checker components can meet these re-
quirements. The DIVA checker is an instruction checker
that validates the operations of a complex microarchitec-
ture design. Razor logic is a circuit-timing error checker
that validates the timing of circuit-level computation. Using
this capability to tolerate timing errors, a Razor design can
eliminate power-hungry voltage margins. Additional exam-
ples of Better Than Worst-Case designs (including Razor)
have been highlighted in a recent issue of IEEE Computer
magazine [9].

2.1 DIVA Instruction Checker

At the University of Michigan, we have been exploring
ways to ease the verification burden of complex designs. The
DIVA (Dynamic Implementation Verification Architecture)
project has developed a clever microprocessor design that
provides a near complete separation of concerns for perfor-
mance and correctness [5, 8, 18]. The design, illustrated
in Figure 2, employs two processors: a sophisticated core
processor that quickly executes the program, and a checker

IThe term was coined by Bob Colwell, architect of the Intel
Pentium Pro and Pentium IV processors.

processor that verifies the same program by re-executing all
instructions in the wake of the complex core processor.

Optimized for Optimized for
Performance Correctness

.
A

speculative
instructions
in-order
with PC, inst,
inputs, addr

Figure 2: Dynamic Implementation Verification Ar-
chitecture

The core processor is responsible for pre-executing the
program to create the prediction stream. The prediction
stream consists of all executed instructions (delivered in pro-
gram order) with their input values and any memory ad-
dresses referenced. In a typical design, the core processor
is identical in every way to the traditional complex micro-
processor core, up to the retirement stage of the pipeline
(where register and memory values are committed to state
resources). In this design, the complex core processor is ef-
fectively “predicting” values because latent bugs or electrical
faults could render its instruction results incorrect.

The checker processor follows the core processor, verifying
the activities of the core processor by re-executing all pro-
gram computation in its wake. The high-quality stream of
instruction predictions from the core processor is exploited
to simplify the design of the checker processor and speed up
its processing. Pre-execution of the program on the complex
core processor eliminates all the processing hazards (e.g.,
branch mispredictions, cache misses, and data dependen-
cies) that slow simple processors and necessitate complex
microarchitectures. Thus it is possible to build an in-order
checker pipeline without speculation, that can match the
retirement bandwidth of the core. In the event of the core
producing a bad prediction value (e.g., due to a core design
error), the checker processor fixes the errant value, flushes
all internal state from the core processor, and then restarts
the core at the instruction following the errant one.

We have shown through cycle-accurate simulation and
timing analysis of a physical checker design that our ap-
proach preserves system performance while keeping low area
overheads and power demands [5]. Furthermore, analysis
suggest that the checker is a fairly simple state machine
that can be formally verified [15] and scaled in performance
and reused [19].

The simple DIVA checker addresses the concerns high-
lighted in the introduction, in that it provides significant
resistance to design and operational faults, and provides a
convenient mechanism for efficient and inexpensive detec-
tion of manufacturing faults. Specifically, if any design er-
rors remain in the core processor, they will be corrected
(albeit inefficiently) by the checker processor. The impact
of design parameter uncertainty is mitigated since the core
processor frequency and voltage can be tuned to typical-case
circuit evaluation latency. Moreover, significant resistance
to operational faults is also provided through low-cost and
high-coverage techniques for detecting and correcting soft-
error related faults. The DIVA approach uses the checker

processor to detect energetic particle strikes in the core pro-
cessor; as for the checker processor, we have developed a re-
execute-on-error technique that allows the checker to check
itself [18].

2.2 Razor Logic

Dynamic voltage scaling (DVS) has emerged as a power-
ful technique to reduce circuit’s energy demands. In a DVS
system, the application or the operating system identify pe-
riods of low processor utilization that can tolerate reduced
frequency. The switch to a reduced frequency, in turns, en-
ables similar reductions in the supply voltage. Since dy-
namic power scales quadratically with supply voltage, DVS
technology can significantly reduce energy consumption with
little impact on the perceived system performance. Razor
Logic is an error-tolerant DVS technology [11, 3]. It incorpo-
rates timing error tolerance mechanisms that eliminate the
need for the ample voltage margins required by traditional
worst-case designs.

Optimized for
Energy Efficiency ~~= < ccmmmmccd e

—.0 Q1 —
I Main
iy Fiip-Flop
iy Error L
[
'
'
'
'

SRAZORFE | _ITm~a -

=~~~ . Optimized for
a) Robust Operation

b)

Figure 3: Razor Logic. The figure illustrates (a) the
Razor flip-flip used to detect circuit timing errors,
and (b) the pipeline recovery mechanism.

Figure 3a illustrates the Razor flip-flop, the mechanism
by which Razor detects circuit timing errors. At the cir-
cuit level, a shadow latch augments each delay-critical flip-
flop. A delayed clock controls the shadow latch, which pro-
vides a reliable second-sample of all pipeline circuit compu-
tations. In any particular clock cycle, if the combinational
logic meets the setup time of the main latch, the main flip-
flop and the shadow latch will latch the same data and no
error will be detected. In the event that the voltage is too
low or the frequency too high for the circuit computation
to meet the setup time of the main latch, the main flip-flop
data will not latch the same data as the shadow latch. In
this case, the shadow latch data is moved into the main flip-
flop where it becomes available to the next pipeline stage
in the following cycle. To guarantee that the shadow latch
will always latch the input data correctly, the allowable op-
erating voltage is constrained at design time such that even
under worst-case conditions, the combinational logic delay
does not exceed the shadow latch’s setup time.

Once a circuit-timing error is detected, a pipeline recovery

mechanism guarantees that timing failures will not corrupt
the register and memory state with an incorrect value. Fig-
ure 3b illustrates the pipeline recovery mechanism. When
a Razor flip-flop generates an error signal, pipeline recovery
logic must take two specific actions. First, it generates a
bubble signal to nullify the computation in the failing stage.
This signal indicates to the next and subsequent stages that
the pipeline slot is empty. Second, recovery logic triggers a
backward moving flush train which voids all instructions in
the pipeline behind the errant instruction. When the flush
train reaches the start of the pipeline, the flush control logic
restarts the pipeline at the instruction following the failing
instruction.

While Razor cannot address the challenges posed by de-
sign complexity, it can effectively address design uncertainty
and soft errors, while at the same time providing typical-case
optimization of pipeline energy demands. In a worst-case
methodology, design uncertainty leads to overly conserva-
tive design styles. In contrast, a Razor system can adapt
energy and frequency characteristics to the specific process
variation of an individual silicon die, eliminating the need for
design-time remedies. Many soft errors manifest themselves
as circuit-level timing glitches, which are addressed by Ra-
zor in the same manner as subcritical voltage-induced timing
errors. We have implemented a prototype of Razor pipeline
in 0.18um technology. Simulation results of the design exe-
cuting the SPEC2000 benchmarks showed impressive energy
savings of up to 64 percent, while the energy overhead for
error detection and recovery was below 3 percent [11].

3. TYPICAL-CASE OPTIMIZATION

Better Than Worst-Case designs create opportunities to
optimize the characteristics of the core component based on
a thorough analysis of operational characteristics. For ex-
ample, in a DIVA system, it is possible to reduce design
time by functionally validating only the most likely opera-
tional states of the core component. In a Razor design, the
decreased energy requirements of frequently executed cir-
cuit paths, mitigates the overall energy requirements of the
design. We call this approach to design typical-case opti-
mization (TCO).

In this section, we provide an example of the benefits of
TCO by optimizing the typical-case latency of an adder cir-
cuit. We identify common carry-propagation paths, based
on program run-time characteristics, and construct a modi-
fied adder circuit with optimized latency characteristics for
frequently-executed carry propagation paths. The resulting
adder circuit is simpler and typically faster than a high-
performance Kogge-Stone adder.

The first step in developing a TCO design is to under-
stand the relevant run-time characteristics. In the specific
situation of optimizing the carry propagation delay of an
adder design, we must first gain a detailed understanding of
carry-propagation distances for each bit position in an adder
circuit, in the context of real program operations. To gather
these measurements, we collected program addition vectors,
that were generated by add, branch, load, and store instruc-
tions invoked during the execution of SPEC 2000 integer
benchmarks, and ran them through a circuit-level represen-
tation of a 64-bit Kogge-Stone adder [17] (The simulator we
used to perform these measurements is presented in Section
4). The adder circuit was instrumented to collect data on
i) the bit locations were carry propagations started, ii) the

length of carry propagations chains, and iii) the distribution
of adder evaluation latency. To evaluate the added benefits
of TCO for real program data, we also performed a similar
analysis on random input vectors.

Figures 4 and 5 show the carry-propagation results for
SPEC 2000 program data and random data, respectively.
The surface graphs illustrate the carry-propagation distance
for each bit-position of the adder circuit. The X axis indi-
cates the starting bit-position of the carry-propagation, and
the Y axis reports the length of the carry-propagation chain.
For each carry-propagation, the Z axis gives the probabil-
ity of a particular carry-propagation initial bit position and
length when executing the specified data set.

0.16

probability

16
Cay, 32

Sty 48

Figure 4: Carry Propagation Distribution for Typi-
cal Data

probability

Figure 5: Carry Propagation Distribution for Ran-
dom Data

As shown in Figure 4, real program data exhibits primar-
ily short carry-propagation distances. In the least signifi-
cant bits, propagation distances are nearly always less than
6 bits, while the more significant bits rarely generate a carry
that propagates for more than 2 bit positions. As expected,
the probability of a carry-propagation for purely random
input vectors is independent of the initial bit position, and
the propagation distance probability decreases geometrically
with the distance of the propagation, since each successive

bit is equally likely to terminate the propagation chain.

This carry-propagation analysis suggests that for real pro-
gram data, most carry propagation occurs in the least sig-
nificant bits, and are propagated only for a short distance.
We can optimize an adder design for these characteristics
by creating an efficient carry propagation circuit optimized
for frequently executed carry-propagation paths. Our 64-bit
TCO adder is illustrated in Figure 6b, below the baseline
Kogge-Stone adder of Figure 6a, a popular adder topology
optimized for minimal worst-case latency. The TCO adder
implements a dedicated carry-lookahead circuit for carry-
propagation of up to 6 bits of length and starting from any
of the least-significant 9 bit positions of the adder. The
remaining bit positions in the TCO adder implement a ded-
icated 2 bit carry propagation. Any computation requiring
an unsupported carry propagation pattern will eventually
compute correctly on the TCO adder through the use of a
fall-back ripple-carry backbone logic.

. Gis Gll GB Gu Gn Gln Gs GE G‘V GE GS Gl GZ GZ Gj GD
Pis P Py P Py Py Py Pg Py Ps Ps Py Py Py Py Po Ci

« G5 Gu Gy Gp Gy Gy G G G G 6 G 6 G 6 G
Pis P Py Pup Py Po Py Py P Pg Pg Py Py P, P Py g

b)

Figure 6: Adder Topologies. The figure illus-
trates the carry propagation logic for the (a) Kogge-
Stone adder and (b) typical-case optimized adder.
Solid lines represent a carry-lookahead logic circuit;
dashed lines represent a ripple-carry logic circuit.

Table 1 compares the relative performance of the baseline
Kogge-Stone adder with the TCO adder. For each adder,
the table lists the worst-case latency for any input vector (in
gate delays), the average latency for all typical-case vectors,
and the average latency over all random input vectors.

Adder Latency (in gate delays)
Topology Worst-Case | Typical-Case | Random
Kogge-Stone 8 5.08 7.09
TCO Adder 128 3.03 3.69

Table 1: Relative Performance of Adder Designs

The worst-case latency is indicative of the delay one would
expect from the adder if placed into a traditional worst-case
style design. The worst-case performance of the Kogge-
Stone adder is proportional to logz N, where N is the number

of bits in the adder computation. The worst-case computa-
tion of the TCO adder is proportional to IV, since some com-
putation will require full evaluation of the ripple carry adder
backbone. As shown, the worst-case performance of the
Kogge-Stone adder is much more favorable than the TCO
adder, making the Kogge-Stone adder more appropriate for
a worst-case style design.

The typical-case latency represents the average delay for
all the input vectors in the SPEC2000 test set to complete.
The typical-case latency of the TCO adder is much less than
the worst-case latency of even the highly optimized Kogge-
Stone adder circuit. This result is to be expected since only
a few evaluations require the use of the backbone ripple-
carry logic. Moreover, The TCO adder performs better, on
average, even on the random data set, since the optimized
paths have enough impact to contrast the rare worst-case
scenarios.

As expected, the results of the random-case experiments
on the TCO design, while better than worst-case latency,
cannot compete with the typical program data experiments.
It is clear from the random-case results that understanding
the typical-case operations of a component and then target-
ing the optimization to these operations can have a dramatic
effect on the typical-case latency of a core component.

As evidenced by these experiments, typical-case optimiza-
tion of circuits can render significant improvements in typical-
case performance. However to enable successful TOC de-
signs, there is a need for new specialized CAD tools that are
enhanced to expose and exploit run-time operational char-
acteristics. We discuss these challenges in the following two
sections.

4. ARCHITECTURAL SIMULATION AND
ANALYSIS

The development of Better Than Worst-Case designs poses
a whole new set of demands on CAD tools. One core require-
ment of this approach is the need to gain a deeper apprecia-
tion of which situations are typical and which situations are
extreme and rare when operating the system to be designed.
For instance, for the adder circuit presented above, we need
to evaluate the most probable sources of carry chains and
the most typical carry propagation depths. Or, in the case
of Razor logic, it’s important to be able to evaluate how
frequently the recovery mechanism intervenes to correct the
system’s operation. Novel simulation solutions are needed to
address these new class of concerns and evaluation demands.
Moreover, new simulations tools must enable designers to
evaluate the performance and correctness of these new sys-
tems, which often bring together circuit-level issues (such as
voltage and process variations) with high level solutions.

To address at least some of these simulation requirements,
we have developed an architectural simulation modelling in-
frastructure that incorporates circuit simulation capabili-
ties. The approach is quite accurate because we analyze
detailed circuit-level phenomena including individual gate
delay and energy characteristics. Performance, while con-
siderably slower than architectural simulation, is maintained
using an effective combination of circuit and architecture
level simulation optimizations.

Figure 7 illustrates the software architecture of our circuit-
aware architectural simulator. The simulator model is based
on the SimpleScalar modeling infrastructure [4]. The Sim-

- ~
4 Y
1 \
App Output
1
Spood Jo | R |)
|:J‘ > 1 1
Scope 1 Architectural 1
Arch r Simulator x Arch
Config | 1 Metrics
1 1
S S
__________ a__dnputs } ___f Dely, . __________
| Voltage, Power, |
1 Constraint: Switching 1
Module ! !
Fidelity Cirouit ' ﬁ N\
and Models ! 1 -
Circuit
e 1
Observability — | > : Metrics
1 Circuit 1
1 . I 4
Tech : Simulator .
Models \ h
I 4 ~ N e e = ——— - 4

Figure 7: Circuit-Aware Architectural Simulation

pleScalar tool set is capable of modeling a variety of plat-
forms ranging from simple unpipelined processors to detailed
dynamically scheduled microarchitectures with multiple lev-
els of memory hierarchies. The architectural simulator takes
two primary inputs: a configuration file that defines the mi-
croarchitecture being modelled, and a program to execute.
The microarchitecture configuration defines the stages of the
pipeline, plus any special units that reside in those stages,
such as branch predictors, caches, functional units, and bus
interfaces.

The architectural simulator produces two primary out-
puts. If the program executes any I/O operations (e.g., file
accesses or console writes), the I/O operations are executed
by the simulator on behalf of the simulated program. In
addition, SimpleScalar provides an extensive instrumenta-
tion capability, such that operations exercised during sim-
ulation can be monitored to produce runtime metrics, such
as instructions per cycle (IPC), average memory latency
(MLAT), or branch predictor accuracy. The metrics out-
put at the end of simulation are used to evaluate the quality
of the microarchitecture configuration, with respect to the
program that was executed on it.

To support circuit-awareness in the architectural simula-
tor, we embedded a circuit simulator (implemented in C++)
within our SimpleScalar models. The embedded circuit sim-
ulator references a combinational logic description of each
relevant component of the architecture under evaluation,
and interfaces with the architectural simulator on a stage-
by-stage basis. At initialization, the circuit description of
the various components is loaded from a structural Verilog
netlist. Concurrently, the interconnected wire capacitance is
loaded from files provided by global routing and placement
tools. In addition, a technology model is loaded that details
the switching characteristics of the standard cell blocks used
in the physical implementation.

During each simulation cycle, each logic block is fed a
new input vector from the architectural simulator. The vec-
tors correspond to the set of values latched at each pipeline
stage input. With this information, the circuit simulator can
compute the relevant measures for the analysis under study:
delay of the computation, total energy dissipated, and addi-
tional switching characteristics such as total current draw.
Depending on the purpose of the simulation, these measures
are returned to the architectural simulator to direct the high
level progress of the simulation and/or returned as output

for evaluation. The circuit simulator has enough accuracy
to operate as a stand alone circuit analysis tool, capable of
transient fault injection experiments, and of investigating
process variation.

The great challenge of implement circuit-aware architec-
tural simulation is achieving acceptable simulation speeds.
To meet this goal we have employed three domain-specific
circuit simulation speed optimizations: i) early circuit sim-
ulation termination based on architectural constraints, ii)
circuit timing memoization, and iii) fine-grained instruction
sampling. Using our optimized circuit-aware architectural
simulator, we are able to examine the performance of a large
program in detail in under 5 hours of simulation.

The first optimization is constraint cased circuit prun-
ing. This optimization allows the architectural simulator to
specify constraints upon which circuit simulator results are
of interest to the architectural simulation (i.e., they would
perhaps cause an architectural level control decision to be
invoked). For example, a Razor simulation is interested in
circuit latency only when the latency is known to be longer
than the clock period of the current clock. The circuit simu-
lator uses these constraints to determine when to drop logic
transition events that are guaranteed to not violate the con-
straints.

The second optimization we implemented was circuit tim-
ing memoization. We leverage program value locality to
improve the performance of circuit timing simulation. We
construct a hash table that records (a.k.a. memoizes) the
following mapping for each circuit-level module:

(vectorstate, vectorin, Vaq) — (delay, energy)

Where vectorstqte represents the current state of the circuit,
vector, is the current input vector, and Vg is the current
operating voltage. The hash table returns the circuit evalua-
tion latency and the circuit evaluation energy. We index the
hash table with a combination of vectorsiate and vector;, be-
cause vectorsiqte €ncode the current state of the circuit and
vector;, indicates the input transitions. Combined with the
current operating voltage, Viq, the inputs to the hash table
fully encodes the factors that determine delay and energy.
Whenever the hash table does not include the requested en-
try, full-scale circuit simulation is performed to compute the
delay and energy of the circuit computation. The result is
then inserted into the hash table with the expectation that
later portions of the program will generate similar vectors.

Finally, we employed SimPoint Analysis to reduce the
number of instructions we needed to process in order to make
clear judgments about program performance characteristics
[7]. SimPoint analysis was recently proposed as a technique
to dramatically reduce the number of instructions simulated
to characterize a program’s performance on a complex mi-
croarchitecture. SimPoint uses basic block distribution anal-
ysis along with several techniques from clustering analysis to
concisely summarize the behavior of an arbitrary section of
execution in a program. This information summarizes whole
program behavior and greatly reduces simulation time by
using only representative samples.

5. TYPICAL-CASE OPTIMIZED SYNTHE-
SIS, VERIFICATION AND TESTING

Circuit-aware architectural simulation is only a small ex-
ample of new solutions in computer-aided design software

to respond to the new design challenges described above,
and the trends towards designs optimized for typical case
scenarios.

In the synthesis domain, the traditional approach has been
to characterize library components and modules by their
worst-case metric values. For instance, given a specific fea-
ture size and operating voltage, the characterizing metrics
would report the worst-case propagation delay and power
consumption. While these metrics have worked well in the
past to design conservative systems that operated correctly
under any possible condition, they are already too limiting
in today’s developments, where high performance demands
force design teams to shave off any extra margins, for in-
stance, by overruling the worst-case metrics of the compo-
nent in isolation, and focusing on its electrical characteristics
in the context of the system where it is used. The lack of
synthesis software that can fully exploit these extra margins,
poses a much higher demand on the engineering team that
has to manually iterate multiple times through the synthesis
process to achieve timing closure and to satisfy power and
performance requirements.

In a Better-Than-Worst-Case scenario synthesis libraries
would have to characterize components by cost metrics dis-
tributions, instead of single data points. For instance, the
delay of a component, for a given set of operating conditions,
could be simplified as a set of discrete intervals of delay val-
ues vs. the probability of the component stabilizing within
that delay. In relation to the traditional approach, the delay
value that is met with probability 1 corresponds to the delay
value reported by a traditional synthesis library. Synthesis
software should support the designer in selecting a desired
level of confidence in the cost metrics of the components for
different portion of a design. In general, the checker portion
of the design should be designed using the most conserva-
tive metrics, while the high performance portion could use
more aggressive selections. The use of statistical analysis in
CAD software has been mostly in the area of analog design
[12, 14, 10]; recent work by Agarwal incorporates process
variation effects in the statistical analysis of clock skews [2].
These are all initial attempts of evaluating design parame-
ters using statistical means, in a TCO design methodology,
statistical techniques must be much more pervasive in all
aspects of the design process.

Moreover, component characterization and optimized de-
sign of macro-module could allow for extra optimizations if
based on "typical” data sets, as in the adder example of
Section 3. Enabling designers to explore this additional op-
portunity requires specialized simulation software that sum-
marizes results in distribution curves appropriate for the
synthesis process.

While the synthesis of typical-case systems poses mostly a
new set of challenges to CAD software, the burden of func-
tional verification could be alleviated in the new methodol-
ogy. Today, the challenge of design verification is to guaran-
tee that a system is functionally correct under any possible
input stimuli. On one hand, simulation-based software can
only provide confidence in design correctness that is limited
to the specific set of tests run on the system; on the other
hand, formal and semi-formal verification tools struggle in
tackling the complexity of current designs, and can typically
only focus on small modules and macro-blocks of the system.
In a TCO design setting, verification has the opportunity
to prioritize its focus: the checker portion of the design de-

mands the highest level of correctness, while the focus for the
high performance portion is on typical-case correctness. The
benefit is that the simpler, smaller checker portion of the de-
sign lends itself more easily to be formally verified, as it is
the case for the DIVA architecture of Section 2.1 [15]. On the
other hand the high-performance, complex portion, is more
suitable to simulation-based verification where simulation
tests are mostly focused on the typical, most frequently-
used execution scenarios. Architectures where checker and
performance portions are not as easily separable, an exam-
ple of which is the Razor architecture, can still benefit from
the conceptual separation between verification-critical and
verification-typical portions within the design. For instance,
in the Razor design, most verification efforts should focus on
the execution paths through the shadow latches.

Testing presents new challenges as wells as new opportu-
nities when faced with TCO designs. Once again, the most
critical portion to be tested is the checker part of a design.
Because of its simpler architecture, it is easier to obtain a
complete and compact set of tests for this portion. Once
the checker is verified, the high performance design can of-
ten be tested by running the system with the operational
checker, and the checker itself can be used to evaluate the
quality of the die. An analysis of the testability of the DIVA
architecture was presented in [18]. Complex TCO systems,
however, present a whole set of new challenges for testing.
For instance, it is even more critical that the checker is fully
tested than in traditional designs, since in TCO systems
the high performance components are expected to be more
faulty than traditional designs. Moreover, when the TCO
systems target the separation between correctness and per-
formance through complex new devices, such as the high
specialized Razor latches, novel, ad-hoc testing techniques
need to be developed.

6. CONCLUSIONS

In this paper we have discussed Better Than Worst-Case
design methodology, a new approach to designing high per-
formance complex digital systems, that defeats the chal-
lenges posed by the increasingly high integration, and small
feature size trends of the semiconductor industry. We dis-
cussed two design solutions in these domain, the DIVA checker
and the Razor logic. We also showed an adder design ex-
ample that performs typical-case optimization and performs
better than traditional worst-case optimized solutions in the
context of Better Than Worst-Case designs. While on one
hand this novel design methodology is gaining increasing in-
terest from the design community, on the other it requires a
re-evaluation of the driving optimization goals in CAD tools,
by posing a whole new set of challenges, and sometimes op-
portunities, in synthesis, verification and testing, some of
which have been highlighted.

Acknowledgements

This work is supported by grants from ARM Ltd., the Na-
tional Science Foundation, and the Gigascale Systems Re-
search Center.

7. REFERENCES

[1] Overclockers.com website, overclockers forum.
http://www.overclockers.com, 2004.

[2] A. Agarwal, V. Zolotov, and D. Blaauw. Statistical clock skew
analysis considering intra-die process variations. IEEE

(11]

(12]

(13]

(14]

(15]

(16

(17]

(18]

(19]

Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 23(8):1231-1242, Aug. 2004.

T. Austin, D. Blaauw, T. Mudge, and K. Flautner. Making
typical silicon matter with razor. IEEE Computer, Mar. 2004.
T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modeling. IEEE Computer,
Feb. 2002.

T. M. Austin. Diva: A reliable substrate for deep submicron
microarchitecture design. 32nd International Symposium on
Microarchitecture (MICRO-32), Dec. 1999.

R. M. Bentley. Validating the pentium 4 microprocessor.
International Conference on Dependable Systems and
Networks (DSN-2001), July 2001.

B. Calder. Simpoint website. In

http://www.cse.ucsd.edu/ calder/simpoint/, 2003.

S. Chatterjee, C. Weaver, and T. Austin. Efficient checker
processor design. In 33rd International Symposium on
Microarchitecture (MICRO-33), Dec. 2000.

B. Colwell. We may need a new box. IEEE Computer, 2004.
P. Crippa, C. Turchetti, and M. Conti. A statistical
methodology for the design of high-performance CMOS
current-steering DACs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
21(4):377-394, Apr. 2002.

D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao,

C. Ziesler, D. Blaauw, T. Austin, T. Mudge, and K. Flautner.
Razor: A low-power pipeline based on circuit-level timing
speculation. In 36th Annual International Symposium on
Microarchitecture (MICRO-36), Dec. 2003.

N. Herr and J. Barnes. Statistical circuit simulation modeling
of CMOS VLSI. IEEE Transactions on Circuits and Systems,
5(1):15-22, Jan. 1986.

G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,

A. Kyker, and P. Roussel. The microarchitecture of the
Pentium 4 processor. Intel Technology Journal, Feb. 2001.

C. Michael and M. Ismail. Statistical Modeling for
Computer-Aided Design of MOS VLSI Circuits. Kluwer
Academic Publishers, 1993.

M. Mneimneh, F. Aloul, S. Chatterjee, C. Weaver, K. Sakallah,
and T. Austin. Scalable hybrid verification of complex
microprocessors. In 38th Design Automation Conference
(DAC-2001), June 2001.

S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin. Measuring architectural vulnerability factors. IEEE
MICRO, Dec. 2003.

J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital
Integrated Circuits. Prentice-Hall, 2003.

C. Weaver and T. Austin. A fault tolerant approach to
microprocessor design. In IEEE International Conference on
Dependable Systems and Networks (DSN-2001), June 2001.
C. Weaver, F. Gebara, T. Austin, and R. Brown. Remora: A
dynamic self-tuning processor. UM Technical Report
CSE-TR-460-02, July 2002.

